Proofs as executions

Emmanuel Beffara¹ Virgile Mogbil²

¹IML, CNRS & Université d'Aix-Marseille

²LIPN, CNRS & Université Paris Nord

TCS 2012 - Amsterdam

Proofs as schedules

Emmanuel Beffara¹ Virgile Mogbil²

¹IML, CNRS & Université d'Aix-Marseille

²LIPN, CNRS & Université Paris Nord

TCS 2012 - Amsterdam

Plan

Introduction

Schedules of processes

Logic for schedules

What next

Logic vs computation

■ The *formulae as types* approach:

```
formula ↔ type
proof rules ↔ primitive instructions
proof ↔ program
normalization ↔ evaluation
```

■ The *proof search* approach:

```
formula \leftrightarrow program
proof rules \leftrightarrow operational semantics
proof \leftrightarrow successful run
```

A few observations

Proof normalization, aka cut elimination:

- the meaning of a proof is in its normal form,
- normalization is an explicitation procedure,
- it really wants to be confluent.

Interpretation of concurrent processes:

- the meaning is the *interaction*, the final (irreducible) state is less relevant,
- a given process may behave very differently depending on scheduling decisions.

Proofs as schedules

The principles of our interpretation:

```
formula ↔ type of interaction
proof rules ↔ primitives for building schedules
proof ↔ schedule for a program
normalization ↔ evaluation
```

What this is not:

- Curry-Howard: proofs are not programs, but behaviours of programs
- Proof search: the dynamics is not in proof construction but in cut-elimination
- Specification, verification: only "may"-style properties can be expressed, currently

Non-determinism in concurrent processes

We consider a CCS-style process calculus.

$$P,Q := 1$$
 inaction
 $a.P$ perform a then do P
 $P \mid Q$ interaction of P and Q
 $(va)P$ scope restriction

There is one source of non-determinism: the pairing of associated events upon synchronization

$$a.P \mid a.Q \mid \bar{a}.R \rightarrow \begin{cases} a.P \mid Q \mid R \\ P \mid a.Q \mid R \end{cases}$$

Pairings

Definition

A *pairing* is an association between occurrences of dual actions

$$p_1: \\ p_2: P = a.b.A \mid \bar{a}.\bar{c}.B \mid \bar{b}.\bar{c}.C \mid \bar{a}.\bar{c}$$

Definition

A determinization of P along a pairing p is a renaming $\partial_p(P)$ of actions in P where names are equal only for related actions.

$$\begin{split} \partial_{p_1}(P) &= a'.b'.\partial(A) \mid \bar{a}.c.\partial(B) \mid \bar{b}''.\bar{c}''.\partial(C) \mid a.\bar{c} \\ \partial_{p_2}(P) &= a.b.\partial(A) \mid \bar{a}.c.\partial(B) \mid \bar{b}.\bar{c}.\partial(C) \mid a'.\bar{c}' \end{split}$$

Pairings

Facts about pairings:

- each run induces a pairing
- runs are equivalent up to permutation of independent events iff they induce the same pairing
- if p is a consistent pairing of P then p is the unique maximal consistent pairing of $\partial_v(P)$

Hence pairings are *execution schedules* and determinized terms represent them inside the process language.

Logic will type these schedules.

A logic of schedules

Types of schedules:

```
A,B := \langle a \rangle A do action a and then act as A A \otimes B two independent parts, one as A, the other as B A \otimes B A and B are both exhibited, but correlated \alpha an unspecified behaviour something that can interact with \alpha
```

Transforming schedules:

 $A_1, ..., A_n \vdash B$ behave as type B using one schedule of each type A_i

			$\overline{1:\alpha\vdash\alpha}$
	$\overline{1:\alpha \vdash \alpha}$		$\overline{d:\alpha\vdash\langle d\rangle\alpha}$
	$\overline{\bar{c}:\alpha\vdash\langle\bar{c}\rangle\alpha}$	$\overline{1:\langle \bar{b}\rangle\alpha\vdash\langle \bar{b}\rangle\alpha}$	$\overline{c.d:\langle \bar{c}\rangle\alpha \vdash \langle d\rangle\alpha}$
$\overline{1:\alpha \vdash \alpha}$	$\overline{b.\bar{c}:\langle\bar{b}\rangle\alpha\vdash\langle\bar{c}\rangle\alpha}$	$c.d: \langle \bar{b} \rangle \alpha, \langle \bar{b} \rangle \alpha \multimap \langle \bar{c} \rangle \alpha \vdash \langle d \rangle \alpha$	
$\overline{\bar{b}:\alpha\vdash\langle\bar{b}\rangle\alpha}$	$\overline{b.\bar{c} \vdash \langle \bar{b} \rangle \alpha \multimap \langle \bar{c} \rangle \alpha}$	$\bar{a}.c.d:\langle a\bar{b}\rangle\alpha,\langle \bar{b}\rangle$	$\partial \alpha \multimap \langle \bar{c} \rangle \alpha \vdash \langle d \rangle \alpha$
$\overline{a.\bar{b}:\alpha\vdash\langle a\bar{b}\rangle\alpha}$	$b.\bar{c} \mid \bar{a}.c.d : \langle a\bar{b}\rangle\alpha \vdash \langle d\rangle\alpha$		
	$a.\bar{b} \mid b.\bar{c} \mid \bar{a}.c.d : \alpha \vdash$	$\langle d \rangle \alpha$	

$$\frac{1:\alpha\vdash\alpha}{\bar{c}:\alpha\vdash\langle\bar{c}\rangle\alpha} \qquad \frac{1:\alpha\vdash\alpha}{\bar{d}:\alpha\vdash\langle\bar{d}\rangle\alpha} \\ \frac{1:\alpha\vdash\alpha}{\bar{b}:\alpha\vdash\langle\bar{b}\rangle\alpha} \qquad \frac{1:\langle\bar{b}\rangle\alpha\vdash\langle\bar{b}\rangle\alpha}{\bar{c}.d:\langle\bar{c}\rangle\alpha\vdash\langle\bar{d}\rangle\alpha} \\ \frac{\bar{b}:\alpha\vdash\langle\bar{b}\rangle\alpha}{\bar{b}:\alpha\vdash\langle\bar{b}\rangle\alpha} \qquad \frac{b.\bar{c}:\langle\bar{b}\rangle\alpha\vdash\langle\bar{c}\rangle\alpha}{\bar{c}.d:\langle\bar{c}\rangle\alpha\vdash\langle\bar{c}\rangle\alpha} \qquad \frac{c.d:\langle\bar{b}\rangle\alpha,\langle\bar{b}\rangle\alpha\multimap\langle\bar{c}\rangle\alpha\vdash\langle\bar{d}\rangle\alpha}{\bar{a}.c.d:\langle\bar{a}\bar{b}\rangle\alpha,\langle\bar{b}\rangle\alpha\multimap\langle\bar{c}\rangle\alpha\vdash\langle\bar{d}\rangle\alpha} \\ \frac{\bar{b}:\alpha\vdash\langle\bar{b}\rangle\alpha}{\bar{a}.\bar{b}:\alpha\vdash\langle\bar{a}\bar{b}\rangle\alpha} \qquad \frac{b.\bar{c}\vdash\langle\bar{b}\rangle\alpha\multimap\langle\bar{c}\rangle\alpha\vdash\langle\bar{d}\rangle\alpha}{\bar{a}.c.d:\langle\bar{a}\bar{b}\rangle\alpha,\langle\bar{b}\rangle\alpha\multimap\langle\bar{c}\rangle\alpha\vdash\langle\bar{d}\rangle\alpha}$$

$$\frac{1:\alpha\vdash\alpha}{\bar{c}:\alpha\vdash\langle\bar{c}\rangle\alpha} \qquad \frac{1:\alpha\vdash\alpha}{\bar{d}:\alpha\vdash\langle\bar{d}\rangle\alpha}$$

$$\frac{1:\alpha\vdash\alpha}{\bar{c}:\alpha\vdash\langle\bar{c}\rangle\alpha} \qquad \frac{1:\langle\bar{b}\rangle\alpha\vdash\langle\bar{b}\rangle\alpha}{\bar{c}.d:\langle\bar{c}\rangle\alpha\vdash\langle\bar{d}\rangle\alpha}$$

$$\frac{1:\alpha\vdash\alpha}{\bar{b}:\alpha\vdash\langle\bar{b}\rangle\alpha} \qquad \frac{b.\bar{c}:\langle\bar{b}\rangle\alpha\vdash\langle\bar{c}\rangle\alpha}{\bar{b}.\bar{c}\vdash\langle\bar{b}\rangle\alpha\multimap\langle\bar{c}\rangle\alpha} \qquad \frac{c.d:\langle\bar{b}\rangle\alpha,\langle\bar{b}\rangle\alpha\multimap\langle\bar{c}\rangle\alpha\vdash\langle\bar{d}\rangle\alpha}{\bar{a}.c.d:\langle\bar{a}\bar{b}\rangle\alpha,\langle\bar{b}\rangle\alpha\multimap\langle\bar{c}\rangle\alpha\vdash\langle\bar{d}\rangle\alpha}$$

$$\frac{a.\bar{b}:\alpha\vdash\langle\bar{a}\bar{b}\rangle\alpha}{\bar{a}.c.d:\langle\bar{a}\bar{b}\rangle\alpha\vdash\langle\bar{d}\rangle\alpha} \qquad \frac{a.\bar{b}|h.\bar{c}|\bar{a}.c.d:\alpha\vdash\langle\bar{d}\rangle\alpha}{\bar{a}.c.d:\langle\bar{a}\bar{b}\rangle\alpha\vdash\langle\bar{d}\rangle\alpha}$$

$$\frac{1:\alpha\vdash\alpha}{\bar{c}:\alpha\vdash\langle\bar{c}\rangle\alpha} \qquad \frac{1:\alpha\vdash\alpha}{\bar{d}:\alpha\vdash\langle\bar{d}\rangle\alpha} \\ \frac{\bar{c}:\alpha\vdash\langle\bar{c}\rangle\alpha}{\bar{b}:\alpha\vdash\langle\bar{b}\rangle\alpha} \qquad \frac{1:\langle\bar{b}\rangle\alpha\vdash\langle\bar{b}\rangle\alpha}{\bar{c}.d:\langle\bar{c}\rangle\alpha\vdash\langle\bar{d}\rangle\alpha} \\ \frac{\bar{b}:\alpha\vdash\alpha}{\bar{b}:\alpha\vdash\langle\bar{b}\rangle\alpha} \qquad \frac{\bar{b}.\bar{c}:\langle\bar{b}\rangle\alpha\vdash\langle\bar{c}\rangle\alpha}{\bar{b}.\bar{c}\vdash\langle\bar{b}\rangle\alpha\multimap\langle\bar{c}\rangle\alpha} \qquad \frac{c.d:\langle\bar{b}\rangle\alpha,\langle\bar{b}\rangle\alpha\multimap\langle\bar{c}\rangle\alpha\vdash\langle\bar{d}\rangle\alpha}{\bar{a}.c.d:\langle\bar{a}\bar{b}\rangle\alpha,\langle\bar{b}\rangle\alpha\multimap\langle\bar{c}\rangle\alpha\vdash\langle\bar{d}\rangle\alpha} \\ \frac{\bar{a}.\bar{b}:\alpha\vdash\langle\bar{a}\bar{b}\rangle\alpha}{\bar{a}.\bar{b}:\alpha\vdash\langle\bar{a}\bar{b}\rangle\alpha} \qquad \frac{\bar{b}.\bar{c}\vdash\bar{a}.c.d:\langle\bar{a}\bar{b}\rangle\alpha\vdash\langle\bar{d}\rangle\alpha}{\bar{a}.c.d:\langle\bar{a}\bar{b}\rangle\alpha\vdash\langle\bar{d}\rangle\alpha}$$

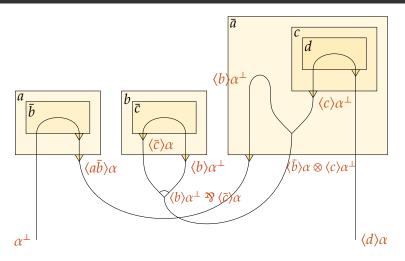
$$\frac{1:\alpha\vdash\alpha}{\bar{c}:\alpha\vdash\langle\bar{c}\rangle\alpha} \qquad \frac{1:\alpha\vdash\alpha}{\bar{d}:\alpha\vdash\langle\bar{d}\rangle\alpha} \\ \frac{1:\alpha\vdash\alpha}{\bar{c}:\alpha\vdash\langle\bar{c}\rangle\alpha} \qquad \frac{1:\langle\bar{b}\rangle\alpha\vdash\langle\bar{b}\rangle\alpha}{\bar{c}.d:\langle\bar{c}\rangle\alpha\vdash\langle\bar{d}\rangle\alpha} \\ \frac{1:\alpha\vdash\alpha}{\bar{b}:\alpha\vdash\langle\bar{b}\rangle\alpha} \qquad \frac{\bar{b}.\bar{c}:\langle\bar{b}\rangle\alpha\vdash\langle\bar{c}\rangle\alpha}{\bar{b}.\bar{c}\vdash\langle\bar{b}\rangle\alpha\multimap\langle\bar{c}\rangle\alpha} \qquad \frac{c.d:\langle\bar{b}\rangle\alpha,\langle\bar{b}\rangle\alpha\multimap\langle\bar{c}\rangle\alpha\vdash\langle\bar{d}\rangle\alpha}{\bar{a}.c.d:\langle\bar{a}\bar{b}\rangle\alpha,\langle\bar{b}\rangle\alpha\multimap\langle\bar{c}\rangle\alpha\vdash\langle\bar{d}\rangle\alpha} \\ \frac{\bar{b}.\bar{c}\vdash\langle\bar{b}\rangle\alpha}{\bar{a}.\bar{b}:\alpha\vdash\langle\bar{a}\bar{b}\rangle\alpha} \qquad \frac{\bar{b}.\bar{c}\vdash\langle\bar{b}\rangle\alpha\multimap\langle\bar{c}\rangle\alpha\vdash\langle\bar{d}\rangle\alpha}{\bar{a}.c.d:\langle\bar{a}\bar{b}\rangle\alpha,\langle\bar{b}\rangle\alpha\multimap\langle\bar{c}\rangle\alpha\vdash\langle\bar{d}\rangle\alpha}$$

$$\frac{1:\alpha\vdash\alpha}{\overline{c}:\alpha\vdash\langle\bar{c}\rangle\alpha} = \frac{\frac{1:\alpha\vdash\alpha}{d:\alpha\vdash\langle\bar{c}\rangle\alpha}}{\frac{\bar{c}:\alpha\vdash\langle\bar{c}\rangle\alpha}{\bar{b}:\alpha\vdash\langle\bar{b}\rangle\alpha}} \frac{\frac{1:\alpha\vdash\alpha}{d:\alpha\vdash\langle\bar{d}\rangle\alpha}}{\frac{\bar{c}:\alpha\vdash\langle\bar{c}\rangle\alpha}{\bar{c}.d:\langle\bar{c}\rangle\alpha\vdash\langle\bar{d}\rangle\alpha}} \frac{\frac{1:\alpha\vdash\alpha}{d:\alpha\vdash\langle\bar{c}\rangle\alpha}}{\frac{\bar{c}.d:\langle\bar{b}\rangle\alpha\vdash\langle\bar{b}\rangle\alpha}{\bar{c}.d:\langle\bar{b}\rangle\alpha\vdash\langle\bar{c}\rangle\alpha\vdash\langle\bar{d}\rangle\alpha}} \frac{1:\langle\bar{b}\rangle\alpha\vdash\langle\bar{b}\rangle\alpha}{\bar{c}.d:\langle\bar{b}\rangle\alpha\vdash\langle\bar{b}\rangle\alpha\vdash\langle\bar{c}\rangle\alpha\vdash\langle\bar{d}\rangle\alpha}}{\frac{\bar{c}.d:\langle\bar{b}\rangle\alpha,\langle\bar{b}\rangle\alpha\multimap\langle\bar{c}\rangle\alpha\vdash\langle\bar{d}\rangle\alpha}{\bar{a}.c.d:\langle\bar{a}\bar{b}\rangle\alpha,\langle\bar{b}\rangle\alpha\multimap\langle\bar{c}\rangle\alpha\vdash\langle\bar{d}\rangle\alpha}}}{a.\bar{b}.\bar{c}\mid\bar{a}.c.d:\alpha\vdash\langle\bar{d}\rangle\alpha}$$

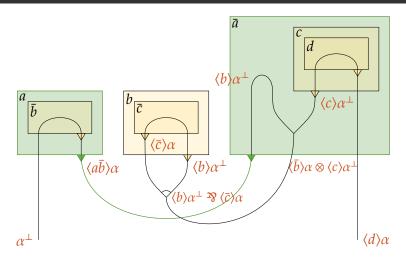
One-sided presentation

$$\frac{1 \vdash \alpha^{\perp}, \alpha}{\overline{c} \vdash \alpha^{\perp}, \langle \bar{c} \rangle \alpha} = \frac{1 \vdash \alpha^{\perp}, \alpha}{\overline{d} \vdash \alpha^{\perp}, \langle \bar{d} \rangle \alpha} \\
\frac{1 \vdash \alpha^{\perp}, \alpha}{\overline{b} \vdash \alpha^{\perp}, \langle \bar{b} \rangle \alpha} = \frac{\overline{d} \vdash \alpha^{\perp}, \langle \bar{d} \rangle \alpha}{\overline{c} \vdash \alpha^{\perp}, \langle \bar{c} \rangle \alpha} = \frac{1 \vdash \alpha^{\perp}, \alpha}{\overline{d} \vdash \alpha^{\perp}, \langle \bar{b} \rangle \alpha} = \frac{1 \vdash \alpha^{\perp}, \alpha}{\overline{d} \vdash \alpha^{\perp}, \langle \bar{d} \rangle \alpha} \\
\frac{\overline{b} \vdash \alpha^{\perp}, \alpha}{\overline{b} \vdash \alpha^{\perp}, \langle \bar{b} \rangle \alpha} = \frac{\overline{b} \vdash \langle b \rangle \alpha^{\perp}, \langle \bar{c} \rangle \alpha}{\overline{b}, \bar{c} \vdash \langle b \rangle \alpha^{\perp}, \langle \bar{c} \rangle \alpha} = \frac{1 \vdash \alpha^{\perp}, \alpha}{\overline{d} \vdash \alpha^{\perp}, \langle \bar{b} \rangle \alpha} = \frac{1 \vdash \alpha^{\perp}, \alpha}{\overline{d} \vdash \alpha^{\perp}, \langle \bar{d} \rangle \alpha} \\
\underline{c.d \vdash \langle b \rangle \alpha^{\perp}, \langle \bar{b} \rangle \alpha \otimes \langle c \rangle \alpha^{\perp}, \langle d \rangle \alpha}} \\
\underline{a.\bar{b} \vdash \alpha^{\perp}, \langle a\bar{b} \rangle \alpha} = \frac{1 \vdash \alpha^{\perp}, \alpha}{\overline{d} \vdash \alpha^{\perp}, \langle \bar{d} \rangle \alpha} = \frac{1 \vdash \alpha^{\perp}, \alpha}{\overline{d} \vdash \alpha^{\perp}, \langle \bar{d} \rangle \alpha}}{\overline{a.c.d \vdash \langle \bar{a}b \rangle \alpha^{\perp}, \langle \bar{d} \rangle \alpha}}$$

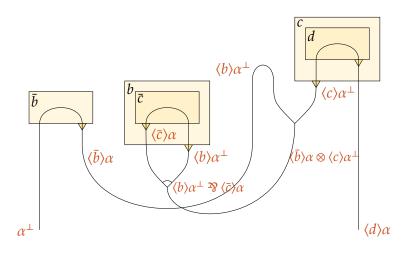
Duality:
$$(A \otimes B)^{\perp} = A^{\perp} \Re B^{\perp}$$
, $(\langle a \rangle A)^{\perp} = \langle \bar{a} \rangle (A^{\perp})$.



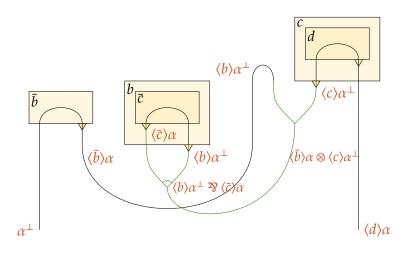
 $a.\bar{b}.1 \mid (b.\bar{c}.1 \mid \bar{a}.c.d)$



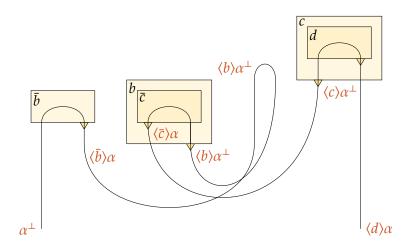
 $a.\bar{b}.1 \mid (b.\bar{c}.1 \mid \bar{a}.c.d)$



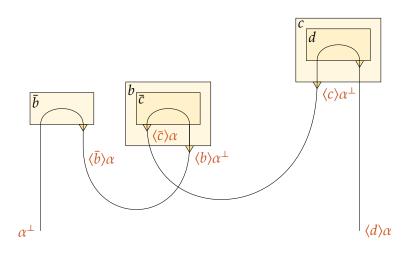
 $\bar{b}.1 \mid (b.\bar{c}.1 \mid c.d)$



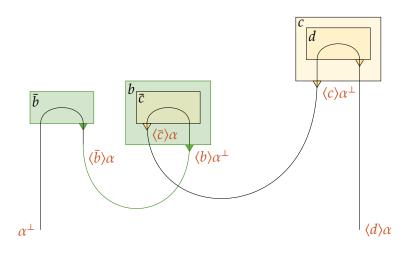
 $\bar{b}.1 \mid (b.\bar{c}.1 \mid c.d)$



 $\bar{b}.1 \mid (b.\bar{c}.1 \mid c.d)$

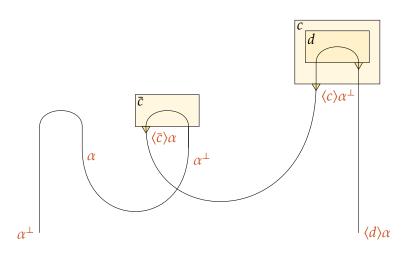


 $\bar{b}.1 \mid (b.\bar{c}.1 \mid c.d)$



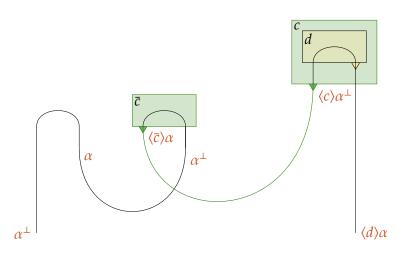
 $\bar{b}.1 \mid (b.\bar{c}.1 \mid c.d)$

Proof net presentation

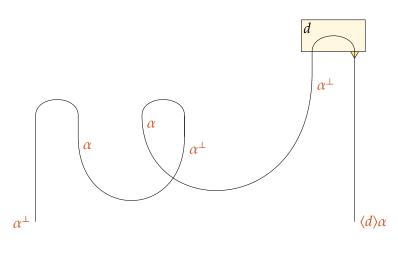


 $1\mid (\bar{c}.1\mid c.d)$

Proof net presentation



 $1 \mid (\bar{c}.1 \mid c.d)$



Mandatory theorems

Theorem (Soundness)

Typing is preserved by reduction, head cut-elimination steps correspond to execution steps.

- a typed deterministic term cannot deadlock,
- normalization corresponds to a particular execution.

Mandatory theorems

Theorem (Soundness)

Typing is preserved by reduction, head cut-elimination steps correspond to execution steps.

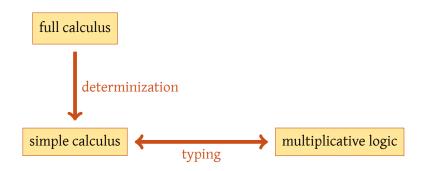
- a typed deterministic term cannot deadlock,
- normalization corresponds to a particular execution.

Theorem (Completeness)

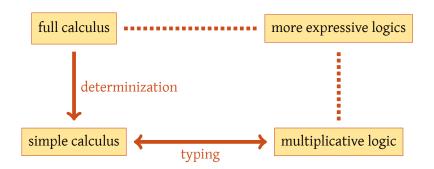
For every lock-avoiding run $P_1 \to ... \to P_n$ there are corresponding typings such that $\pi_1 : P_1 \vdash \Gamma \to ... \to \pi_n : P_n \vdash \Gamma$ is a cut elimination sequence.

need to define "lock-avoiding"

Summing up



Summing up



Conclusion, extensions

Current state of affairs:

- A logical description of scheduling in processes
 - describes how schedules can be safely composed
 - normal forms as basic open schedules
- Explicitation of control flow through processes
- Hints for a new study of causality in processes

Possible extensions:

Connectives to combine related behaviours:

$$t_1.(t_2+f_2\mid \bar{t}_0)+f_1.(t_2.\bar{t}_0+f_1.\bar{f}_0) \vdash B[t_1,f_1] \otimes B[t_2,f_2] \multimap B[t_0,f_0]$$
 where $B[t,f] \coloneqq \alpha \multimap \langle \bar{t} \rangle \alpha \oplus \langle \bar{f} \rangle \alpha$

- Predicates to describe states
- Richer action modalities for richer communication

Thank you.