
Streaming Transducers

Rajeev Alur
University of Pennsylvania

Verifier
Program

Requirement

yes/proof
no/bug

Can Software Verification be Automated?

Improving reliability of software: Grand challenge for computer science

Recent Success Story: Software Model Checking

Microsoft success (SLAM, SDV)
Theoretical advances +
Tool engineering +
Target choice (device drivers)

do{
KeAcquireSpinLock();
nPacketsOld = nPackets;
if(request){
request = request->Next;
KeReleaseSpinLock();
nPackets++;

}
}while(nPackets!=

nPacketsOld);
KeReleaseSpinLock();

Do lock operations, acquire and
release strictly alternate on every
program execution?

New Opportunity: Concurrent Data Structures

boolean dequeue(queue *queue, value *pvalue)
{
node *head;
node *tail;
node *next;

while (true) {
head = queue->head;
tail = queue->tail;
next = head->next;
if (head == queue->head) {
if (head == tail) {
if (next == 0)
return false;

cas(&queue->tail, tail, next);
} else {
*pvalue = next->value;
if (cas(&queue->head, head, next))
break;

}
}

}
delete_node(head);
return true;

}

head tail

3 8 2

Programs Manipulating Heap-allocated Data

Heap consists of cells containing data, with a graph structure
induced by next pointers

Operations on data structures traverse and update heap

All existing results show undecidability for simple properties
(e.g. aliasing: can two pointers point to same cell?)

Why can’t we view a program as a transducer?
Operations such as insert, delete, reverse map sequences
of data items to sequences of data items
Automata (NFA, pushdown, Buchi, tree) theory has provided
foundations to algorithmic verification

String Transducers

A transducer maps a string over input alphabet to a string over
output alphabet

Simplest transducer model: (Finite-state) Mealy Machines

At every step, read an input symbol, produce an output symbol
and update state

Example: Replace every a and b by 0, and every c by 1

Analyzable like finite automata, but not very expressive
What about “delete all a symbols”?

q q’
a/0

Sequential Transducers

At every step, read an input symbol, output zero or more
symbols, and update state

Examples:
Delete all a symbols
Duplicate each symbol
Insert 0 after first b

Well-studied with some appealing properties
Equivalence decidable for deterministic case
Minimization possible
… but fragile theory

Expressive enough ? What about reverse?

q q’
a/010

Deterministic Two-way Transducers

Input stored on tape, with a read head
At each step, produce 0 or more output symbols, update state,
move left/right, or stop

Examples:
Reverse
Copy entire string (map w to w.w)
Delete a symbols if string ends with b (regular look-ahead)
Swapping of substrings

More expressive than det. sequential transducers, and define
the class of regular transductions

q

a c b a b b c

Two-way Transducers

Closed under operations such as
Sequential composition
Regular look-ahead: f(w) = if w in L then f1(w) else f2(w)

Equivalent characterization using MSO (monadic second-order
logic) definable graph transductions

Checking equivalence is decidable !

But not much used in program verification, Why?
Not a suitable abstraction for programs over linked lists
A C program and a two-way transducer reverse a list in very
different ways

Streaming Transducer: Delete

Finite state control + variable x ranging over output strings

String variables explicitly updated at each step

Delete all a symbols

output x

a / x := x

x := ε

b / x := xb

Streaming Transducer: Reverse

Symbols may be added to string variables at both ends

output x

a / x := ax

x := ε

b / x := bx

Streaming Transducer: Regular Look Ahead

Multiple string variables are allowed (and needed)

If input ends with b, then delete all a symbols, else reverse

output x

a / (x,y) := (ax,y)

x,y := ε
output y

b / (x,y) := (bx,yb)

b/ (x,y) := (bx,yb)

a/ (x,y) := (ax,y)

Variable x equals reverse of the input so far
Variable y equals input so far with all a’s deleted

Streaming Transducer: Concatenation

String variables can be concatenated

Example: Swap substring before first a with substring
following last a

a a

a a

Key restriction: a variable can appear at most once on RHS
(x,y) := (xy, ε) allowed
(x,y) := (xy, y) not allowed

Streaming String Transducer (SST)

1. Finite set Q of states
2. Input alphabet A
3. Output alphabet B
4. Initial state q0

5. Finite set X of string variables
6. Partial output function F : Q -> (B U X)*
7. State transition function δ : Q x A -> Q
8. Variable update function ρ : Q x A x X -> (B U X)*

Output function and variable update function required to be
copyless: each variable x can be used at most once
Configuration = (state q, valuation α from X to B*)
Semantics: Partial function from A* to B*

Transducer Application: String Sanitizers
BEK: A domain specific language for writing string manipulating
sanitizers on untrusted user data

Analysis tool translates BEK program into (symbolic)
transducer and checks properties such as

Is transduction idempotent: f(f(w)) = f(w)
Do two transductions commute: f1(f2(w)) = f2(f1(w))

Recent success in analyzing IE XSS filters and other web apps

Example sanitizer that BEK cannot capture (but SST can):
Rewrite input w to suffix following the last occurrence of “dot”

Fast and precise sanitizer analysis with BEK.
Hooimeijer et al. USENIX Security 2011

Transducer Application: Program Synthesis
Programming by examples to facilitate end-user programming

Microsoft prototype to learn the transformation for Excel
Spreadsheet Macros: success reported in practice, but no
theoretical foundation (e.g. convergence of learning algorithm)

Example transformation (swapping substrings requires SST !)

Automating string processing in spreadsheets using input-output examples.
Gulwani. POPL 2011

Aceto, Luca Luca Aceto

Monika R. Henzinger Monika Henzinger

Jiri Sgall Jiri Sgall

SST Properties
At each step, one input symbol is processed, and at most a
constant number of output symbols are newly created

Output is bounded: Length of output = O(length of input)

SST transduction can be computed in linear time

Finite-state control: String variables not examined

SST cannot implement merge
f(u1u2….uk#v1v2…vk) = u1v1u2v2….ukvk

Multiple variables are essential
For f(w)=wk, k variables are necessary and sufficient

Decision Problem: Type Checking

Pre/Post condition assertion: { L } S { L’ }
Given a regular language L of input strings (pre-condition), an
SST S, and a regular language L’ of output strings (post-
condition), verify that for every w in L, S(w) is in L’

Thm: Type checking is solvable in polynomial-time
Key construction: Summarization

Decision Problem: Equivalence

Functional Equivalence;
Given SSTs S and S’ over same input/output alphabets,
check whether they define the same transductions.

Thm: Equivalence is solvable in PSPACE
(polynomial in states, but exponential in # of string variables)

Expressiveness

Thm: A string transduction is definable by an SST iff it is regular

1. SST definable transduction is MSO definable
2. MSO definable transduction can be captured by a two-way

transducer (Engelfriet/Hoogeboom 2001)
3. SST can simulate a two-way transducer

Evidence of robustness of class of regular transductions

Closure properties
1. Sequential composition: f1(f2(w))
2. Regular conditional choice: if w in L then f1(w) else f2(w)

From Two-Way Transducers to SSTs

q

Two-way transducer A visits each position multiple times
What information should SST S store after reading a prefix?

f(q)
xq

For each state q of A, S maintains summary of computation of A
started in state q moving left till return to same position

1. The state f(q) upon return
2. Variable xq storing output emitted during this run

Challenge for Consistent Update

q

Map f: Q -> Q and variables xq need to be consistently updated at
each step

If transducer A moving left in state u on symbol a transitions to
q, then updated f(u) and xu depend on current f(q) and xq

Problem: Two distinct states u and v may map to q
Then xu and xv use xq, but assignments must be copyless !
Solution requires careful analysis of sharing (required value of

each xq maintained as a concatenation of multiple chunks)

f(q)
xq

a

u
f(u)

Heap-manipulating Programs

Sequential program +
Heap of cells containing data and next pointers +
Boolean variables +
Pointer variables that reference heap cells

Program operations can add cells, change next pointers, and
traverse the heap by following next pointers

How to restrict operations to capture exactly regular transductions

head prev

3 8 2 5

curr

4new

Representing Heaps in SST

x

y

z

Shape (encoded in state of SST):
x : u1 u2 z ; y : u4 u2 z ; z: u3

String variables: u1, u2, u3, u4

Shape + values of string vars enough to encode heap

u3
u2

u1

u4

Simulating Heap Updates

x

y

z

Consider program instruction
y.next := z

How to update shape and string variables in SST?

u3
u2

u1

u4

Simulating Heap Updates
x

y

z

New Shape: x: u1 z ; y : z ; z : u3

Variable update: u1 := u1 u2

Special cells:
Cells referenced by pointer vars
Cells that 2 or more (reachable) next pointers point to

Contents between special cells kept in a single string var
Number of special cells = 2(# of pointer vars) - 1

u3

u1

Regular Heap Manipulating Programs

Update
x.next := y (changes heap shape destructively)
x := new (a) (adds new cell with data a and next nil)

Traversal
curr := curr.next (traversal of input list)
x := y.next (disallowed in general)

Theorem: Programs of above form can be analyzed by compiling
into equivalent SSTs
Single pass traversal of input list possible
Pointers cannot be used as multiple read heads

Manipulating Data

Each string element consists of (tag t, data d)
Tags are from finite set
Data is from unbounded set D that supports = and < tests
Example of D: Names with lexicographic order

SSTs and list-processing programs generalized to allow
Finite set of data variables
Tests using = and < between current value and data vars
Input and output values

Checking equivalence remains decidable (in PSPACE) !
Many common routines fall in this class

Check if list is sorted
Insert an element in a sorted list
Delete all elements that equal input value

function delete
input ref curr;
input data v;
output ref result;
output bool flag := 0;
local ref prev;

while (curr != nil) & (curr.data = v) {
curr := curr.next;
flag := 1;
}

result := curr;
prev:= curr;
if (curr != nil) then {

curr := curr.next;
prev.next := nil;
while (curr != nil) {

if (curr.data = v) then {
curr := curr.next;
flag := 1;
}

else {
prev.next := curr;
prev := curr;
curr := curr.next;
prev.next := nil;
}

}

Decidable Analysis:
1. Assertion checks
2. Pre/post condition
3. Full functional correctness

Algorithmic Verification of List-processing Programs

Recap

Streaming String Transducers
New model for computing string transformations in a single pass
Key to expressiveness: multiple string variables
Key to analyzability: copyless updates and write-only output

Decidable equivalence and type checking

Robust expressiveness equivalent to MSO and two-way models

Equivalent class of single pass list processing programs with
solvable program analysis problems

Towards a Theory of Transducers

Streaming String Transducers
(with P. Cerny; POPL 2011, FSTTCS 2010)

Transducers over Infinite Strings
(with E. Filiot, A. Trivedi; LICS 2012)

Nondeterministic Streaming Transducers
(with J. Deshmukh; ICALP 2011)

Streaming Tree Transducers
(with L. D’Antoni; ICALP 2012)

Regular Functions / Cost Register Automata
(with L. D’Antoni, J. Deshmukh, M. Raghothaman, Y. Yuan)

Tree Transformations

Motivation: XML transformations
Existing models: Top-down / Bottom-up Tree transducers,
Macro Tree Transducers
Goal: Find a transducer model that can compute all “regular”
(MSO-definable) tree transformations in a single pass

Nested Words

Model of data with linear and hierarchical structure
(encodes strings, ranked/unranked ordered trees)
Nested Word Automata: Finite control + Visibly pushdown
stack (push at calls, pop at returns)
Many theoretical results and recent tools

see http://www.cis.upenn.edu/~alur/nw.html
Transducer can push/pop variables also

a <b c <a b c a> b> <c b c>

Operations on Nested Word Variables

Concatenation

Substitution

?

Nested words with holes

Streaming Tree Transducer (STT)

Finite state control + Stack
Finitely many variables ranging over nested words with holes
Processes input nested word left-to-right in single pass
At internal symbol, updates state and variables
At call, pushes stack symbol + vars, and resets vars
At return, new state + vars depend on current state + vars and
popped stack symbol + vars
Updates using concatenation and substitution
Updates obey Single-Use-Restriction

A variable may appear multiple times in RHS, but only one
copy contributes to the output
Single use enforced using conflict relation over variables
Copyless limits expressiveness

STT Results

Can capture many tree transformations naturally
Insert, Delete, Swap, Reverse, Bounded copy

Computes output in linear-time in single pass
STTs are closed under regular lookahead
Expressiveness equals MSO-definable transformations

Relies on MSO equivalence of MTTs (Engelfriet/Maneth)
Type checking solvable in EXPTIME
Functional equivalence solvable in NEXPTIME
Natural restrictions lead to MSO-equivalent models

Strings to Nested Words
Nested Words to Strings
Binary/Ranked Trees to Binary/Ranked Trees

Open Problems and Challenges

Complexity of equivalence of SSTs and STTs
Large gap between lower and upper bounds

Machine-independent characterization of “finite-state”
transductions

To compute a function f : A* -> B* which auxiliary functions
must be computed ?

Regular functions
Decidability of min-cost for discounted cost automata
Decidability of equivalence for tropical semiring

Learning algorithms

	Slide Number 1
	Verifier
	Recent Success Story: Software Model Checking
	New Opportunity: Concurrent Data Structures�
	Programs Manipulating Heap-allocated Data
	String Transducers
	Sequential Transducers
	Deterministic Two-way Transducers
	Two-way Transducers
	Streaming Transducer: Delete
	Streaming Transducer: Reverse
	Streaming Transducer: Regular Look Ahead
	Streaming Transducer: Concatenation
	Streaming String Transducer (SST)
	Transducer Application: String Sanitizers
	Transducer Application: Program Synthesis
	SST Properties
	Decision Problem: Type Checking
	Decision Problem: Equivalence
	Expressiveness
	From Two-Way Transducers to SSTs
	Challenge for Consistent Update
	Heap-manipulating Programs
	Representing Heaps in SST
	Simulating Heap Updates
	Simulating Heap Updates
	Regular Heap Manipulating Programs
	Manipulating Data
	Slide Number 29
	Recap
	Towards a Theory of Transducers
	Tree Transformations
	Nested Words
	Operations on Nested Word Variables
	Streaming Tree Transducer (STT)
	STT Results
	Open Problems and Challenges

