Streaming Transducers

Rajeev Alur
University of Pennsylvania

L_I&?-.UB

e Pennin
& Engineering

Can Software Verification be Automated?

Program — . yes/proof

Verifier
Requirement —— — no/bug

Improving reliability of software: Grand challenge for computer science

Recent Success Story: Software Model Checking

do{

KeAcquireSpinLock(); Microsoft success (SLAM, SDV)
NnPacketsOld = nPackets; .
if(request){ Theoretical advances +

request = request->Next; Tool engineering +
KeReleaseSpinLock();
nPackets++;

}

Iwhile(nPackets!=
nPacketsOld) ;

KeReleaseSpinLock();

Target choice (device drivers)

Do lock operations, acquire and
release strictly alternate on every
program execution?

New Opportunity: Concurrent Data Structures

boolean dequeue(queue *queue, value *pvalue)

{

node *head;
node *tail;

node *next; head tail
while (true) { l
head = queue->head; —>1 3 —>1 8 —>1 2 —>
tail = queue->tail;

next = head->next;
1T (head == queue->head) {
i head == tail) {

It (next == 0) THE ART
return false; _ of
cas(&queue->tail, tail, next); MULTIPROCESSOR
} else PROGRAMMING

*pvalue = next->value;
IT (cas(&queue->head, head, next))
y break;

}

¥
delete node(head);
return true;

}

Maurice Herlihy & Nir Shavit

Programs Manipulating Heap-allocated Data

1 Heap consists of cells containing data, with a graph structure
induced by next pointers

 Operations on data structures traverse and update heap

Q All existing results show undecidability for simple properties
(e.g. aliasing: can two pointers point to same cell?)

d Why can't we view a program as a transducer?

¢ Operations such as insert, delete, reverse map sequences
of data items to sequences of data items

¢ Automata (NFA, pushdown, Buchi, tree) theory has provided
foundations to algorithmic verification

String Transducers

O A transducer maps a string over input alphabet to a string over
output alphabet

O Simplest transducer model: (Finite-state) Mealy Machines

[At every step, read an input symbol, produce an output symbol
and update state

a/0

9—— 9

1 Example: Replace every a and b by O, and every c by 1

[Analyzable like finite automata, but not very expressive
What about "delete all a symbols"?

Sequential Transducers

1 At every step, read an input symbol, output zero or more
symbols, and update state

a/010
q > (

d Examples:
Delete all a symbols
Duplicate each symbol
Insert O after first b

[Well-studied with some appealing properties
Equivalence decidable for deterministic case
Minimization possible
.. but fragile theory

[Expressive enough ? What about reverse?

Deterministic Two-way Transducers

O Input stored on tape, with a read head

[At each step, produce O or more output symbols, update state,
move left/right, or stop

acbabbc
«— T —>
q
d Examples:
Reverse

Copy entire string (map w to w.w)
Delete a symbols if string ends with b (reqular look-ahead)
Swapping of substrings

O More expressive than det. sequential transducers, and define
the class of reqular transductions

Two-way Transducers

 Closed under operations such as
Sequential composition
Regular look-ahead: f(w) = if w in L then f(w) else f,(w)

O Equivalent characterization using MSO (monadic second-order
logic) definable graph transductions

[Checking equivalence is decidable |

O But not much used in program verification, Why?
Not a suitable abstraction for programs over linked lists

A C program and a two-way transducer reverse a list in very
different ways

Streaming Transducer: Delete

O Finite state control + variable x ranging over output strings
[String variables explicitly updated at each step

d Delete all a symbols

Streaming Transducer: Reverse

[Symbols may be added to string variables at both ends

Streaming Transducer: Regular Look Ahead

O Multiple string variables are allowed (and needed)

d If input ends with b, then delete all a symbols, else reverse

a/ (xy) = (axy) b/ (xy) := (bx,yb)

Xy = A b/ (x.y) := (bx,yb)
output y

a/ (xy) = (ax.y)

Variable x equals reverse of the input so far
Variable y equals input so far with all a's deleted

Streaming Transducer: Concatenation

O String variables can be concatenated

O Example: Swap substring before first a with substring
following last a

I a | | 0 I

I | e) S—

1 Key restriction: a variable can appear at most once on RHS
(x.y) := (xy, €) allowed
(x,y) = (xy, y) not allowed

©NO O A wWN R

Streaming String Transducer (SST)

Finite set Q of states

Input alphabet A

Output alphabet B

Initial state q,

Finite set X of string variables

Partial output function F: Q -> (B U X)*

State transition function 5 : Q x A -> Q

Variable update functionp: Q x A x X -> (B U X)*

Output function and variable update function required to be
copyless: each variable x can be used at most once

Configuration = (state g, valuation a. from X to B*)
Semantics: Partial function from A* to B*

Transducer Application: String Sanitizers

O BEK: A domain specific language for writing string manipulating
sanitizers on untrusted user data

 Analysis tool translates BEK program into (symbolic)
transducer and checks properties such as

¢ Is transduction idempotent: f(f(w)) = f(w)
¢ Do two transductions commute: f{(f,(w)) = f,(f;(w))

[Recent success in analyzing IE XSS filters and other web apps

Q Example sanitizer that BEK cannot capture (but SST can):
Rewrite input w to suffix following the last occurrence of “dot”

Fast and precise sanitizer analysis with BEK.
Hooimeijer et al. USENIX Security 2011

Transducer Application: Program Synthesis

O Programming by examples to facilitate end-user programming

O Microsoft prototype to learn the transformation for Excel
Spreadsheet Macros: success reported in practice, but no
theoretical foundation (e.g. convergence of learning algorithm)

O Example transformation (swapping substrings requires SST |)

Aceto, Luca Luca Aceto

Monika R. Henzinger | Monika Henzinger

Jiri Sqgall Jiri Sqgall

Automating string processing in spreadsheets using input-output examples.
Gulwani. POPL 2011

SST Properties

1 At each step, one input symbol is processed, and at most a
constant number of output symbols are newly created

A Output is bounded: Length of output = O(length of input)
0 SST transduction can be computed in linear time
Q Finite-state control: String variables not examined

[SST cannot implement merge
f(UUs... U HV V5.V,) = UViUL V5. ULV,

O Multiple variables are essential
For f(w)=wk, k variables are necessary and sufficient

Decision Problem: Type Checking

Pre/Post condition assertion: {L} S {L'}

Given a regular language L of input strings (pre-condition), an
SST S, and a reqular language L' of output strings (post-
condition), verify that for every winL, S(w) is in L’

Thm: Type checking is solvable in polynomial-time
Key construction: Summarization

Decision Problem: Equivalence

Functional Equivalence;
Given SSTs S and S’ over same input/output alphabets,
check whether they define the same transductions.

Thm: Equivalence is solvable in PSPACE
(polynomial in states, but exponential in # of string variables)

Expressiveness

Thm: A string transduction is definable by an SST iff it is regular

1. SST definable transduction is MSO definable

2. MSO definable transduction can be captured by a two-way
transducer (Engelfriet/Hoogeboom 2001)

3. SST can simulate a fwo-way transducer

Evidence of robustness of class of regular transductions
Closure properties

1. Sequential composition: f,(f,(w))
2. Regular conditional choice: if w in L then f(w) else f,(w)

From Two-Way Transducers to SSTs

0—s>0—>0—>04->0—0—0

q
" —

Two-way transducer A visits each position multiple times
What information should SST S store after reading a prefix?

For each state g of A, S maintains summary of computation of A
started in state q moving left till return to same position

1. The state f(q) upon return
2. Variable x, storing output emitted during this run

Challenge for Consistent Update

a

>() >
q «— u
o — £(q)— f(u)

Map f: Q -> Q and variables x, need to be consistently updated at
each step

If transducer A moving left in state u on symbol a transitions to
q. then updated f(u) and x, depend on current f(q) and x,

Problem: Two distinct states u and v may map to g
Then x, and x, use x,, but assignments must be copyless !

Solution requires careful analysis of sharing (required value of
each x, maintained as a concatenation of multiple chunks)

Heap-manipulating Programs

Sequential program +

Heap of cells containing data and next pointers +
Boolean variables +

Pointer variables that reference heap cells

Program operations can add cells, change next pointers, and
traverse the heap by following next pointers

head prev curr

! ool

—13] 18 12| 5

hew —>| 4

How to restrict operations to capture exactly regular transductions

Representing Heaps in SST

X

%»090»0?;90»0

< —>

Uz
/0%4 Hs

Y

Shape (encoded in state of SST):
X' UUyZ; Yi UgU,Z; Z U3
String variables: uy, u,, us, U,
Shape + values of string vars enough to encode heap

Simulating Heap Updates

X

%»090»0?;90»0

< —>

Uz
/0%4 s

Y

Consider program instruction
y.next = z
How to update shape and string variables in SST?

Simulating Heap Updates

X

\D\Ov\o\.ul Z
E)»O»O»f@%%%
Y b

0O

New Shape: x: ujz; y: z;z: u;
Variable update: u; = u; u,
Special cells:

Cells referenced by pointer vars
Cells that 2 or more (reachable) next pointers point to

Contents between special cells kept in a single string var
Number of special cells = 2(# of pointer vars) - 1

Regular Heap Manipulating Programs

Update

X.next iz y (changes heap shape destructively)

X := new (a) (adds new cell with data a and next nil)
Traversal

curr := curr.next (traversal of input list)

X iz y.next (disallowed in general)

Theorem: Programs of above form can be analyzed by compiling
into equivalent SSTs

Single pass traversal of input list possible
Pointers cannot be used as multiple read heads

Manipulating Data

O Each string element consists of (tag t, data d)
Tags are from finite set
Data is from unbounded set D that supports = and < tests
Example of D: Names with lexicographic order

1 SSTs and list-processing programs generalized to allow
Finite set of data variables
Tests using = and < between current value and data vars
Input and output values

[Checking equivalence remains decidable (in PSPACE) |
0 Many common routines fall in this class

Check if list is sorted

Insert an element in a sorted list

Delete all elements that equal input value

Algorithmic Verification of List-processing Programs

function delete
input ref curr;
input data v;
output ref result;
output bool flag := 0;
local ref prev;

while (curr '= nil) & (curr.data = v) {

Curr :>= curr.next;
flag := 1;
resu%t 1= curr;

prev:= curr;
iIT (curr = nil) then {
CUrr :-= curr.next;
prev.next = nil;
while (curr '= nil) {
1T (curr. data = v) then {

CUrr -= curr.next;
flag -= 1;
elsepliev_next = curr- Decidable Analysis:
prev :-= curr; 1. Assertion checks
curr .= gurr.next. 2. Pre/post condition
EJ)» 3. Full functional correctness

Recap

0 Streaming String Transducers
* New model for computing string transformations in a single pass
* Key to expressiveness: multiple string variables
¢ Key to analyzability: copyless updates and write-only output

1 Decidable equivalence and type checking
0 Robust expressiveness equivalent to MSO and two-way models

O Equivalent class of single pass list processing programs with
solvable program analysis problems

Towards a Theory of Transducers

0 Streaming String Transducers
(with P. Cerny; POPL 2011, FSTTCS 2010)
d Transducers over Infinite Strings
(with E. Filiot, A. Trivedi; LICS 2012)
0 Nondeterministic Streaming Transducers
(with J. Deshmukh; ICALP 2011)
0 Streaming Tree Transducers
(with L. D'Antoni; ICALP 2012)
O Regular Functions / Cost Register Automata
(with L. D'Antoni, J. Deshmukh, M. Raghothaman, Y. Yuan)

Tree Transformations

A

O Motivation: XML transformations

d Existing models: Top-down / Bottom-up Tree transducers,
Macro Tree Transducers

d Goal: Find a transducer model that can compute all "reqular”
(MSO-definable) tree transformations in a single pass

Nested Words

a<bc<abca>b><cbc

Q Model of data with linear and hierarchical structure
(encodes strings, ranked/unranked ordered trees)

O Nested Word Automata: Finite control + Visibly pushdown
stack (push at calls, pop at returns)

O Many theoretical results and recent tools
see http://www.cis.upenn.edu/~alur/nw.html
A Transducer can push/pop variables also

Operations on Nested Word Variables

Concatenation

o

Substitution

5t [T -

Nested words with holes

U000 OO

U O

Streaming Tree Transducer (STT)

Finite state control + Stack

Finitely many variables ranging over nested words with holes
Processes input nested word left-to-right in single pass

At internal symbol, updates state and variables

At call, pushes stack symbol + vars, and resets vars

At return, new state + vars depend on current state + vars and
popped stack symbol + vars

Updates using concatenation and substitution
Updates obey Single-Use-Restriction

* A variable may appear multiple times in RHS, but only one
copy contributes to the output

¢ Single use enforced using conflict relation over variables
¢ Copyless limits expressiveness

U OO

U OO

STT Results

Can capture many tree transformations naturally
Insert, Delete, Swap, Reverse, Bounded copy

Computes output in linear-time in single pass

STTs are closed under regular lookahead

Expressiveness equals MSO-definable transformations

¢+ Relies on MSO equivalence of MTTs (Engelfriet/Maneth)

Type checking solvable in EXPTIME

Functional equivalence solvable in NEXPTIME

Natural restrictions lead to MSO-equivalent models

¢ Strings to Nested Words

*+ Nested Words to Strings

¢ Binary/Ranked Trees to Binary/Ranked Trees

Open Problems and Challenges

d Complexity of equivalence of SSTs and STTs

* Large gap between lower and upper bounds

O Machine-independent characterization of “finite-state”
transductions

* To compute a function f : A* -> B* which auxiliary functions
must be computed ?

[Regular functions
¢ Decidability of min-cost for discounted cost automata
* Decidability of equivalence for tropical semiring

O Learning algorithms

	Slide Number 1
	Verifier
	Recent Success Story: Software Model Checking
	New Opportunity: Concurrent Data Structures�
	Programs Manipulating Heap-allocated Data
	String Transducers
	Sequential Transducers
	Deterministic Two-way Transducers
	Two-way Transducers
	Streaming Transducer: Delete
	Streaming Transducer: Reverse
	Streaming Transducer: Regular Look Ahead
	Streaming Transducer: Concatenation
	Streaming String Transducer (SST)
	Transducer Application: String Sanitizers
	Transducer Application: Program Synthesis
	SST Properties
	Decision Problem: Type Checking
	Decision Problem: Equivalence
	Expressiveness
	From Two-Way Transducers to SSTs
	Challenge for Consistent Update
	Heap-manipulating Programs
	Representing Heaps in SST
	Simulating Heap Updates
	Simulating Heap Updates
	Regular Heap Manipulating Programs
	Manipulating Data
	Slide Number 29
	Recap
	Towards a Theory of Transducers
	Tree Transformations
	Nested Words
	Operations on Nested Word Variables
	Streaming Tree Transducer (STT)
	STT Results
	Open Problems and Challenges

